Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1.10-Phenanthrolin-1-ium tetrabromido(1.10-phenanthroline- $\kappa^2 N.N'$)antimonate(III) dichloromethane solvate

Jun Zhai, Handong Yin,* Feng Li and Daqi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059 People's Republic of China Correspondence e-mail: handongyin@163.com

Received 13 November 2007; accepted 18 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.012 Å; R factor = 0.040; wR factor = 0.112; data-to-parameter ratio = 15.8.

In the title compound, $(C_{12}H_9N_2)$ [SbBr₄($C_{12}H_8N_2$)]·CH₂Cl₂, the Sb atom is six-coordinated by two N atoms of 1,10phenanthroline and four Br atoms with a distorted cis-SbN₂Br₄ octahedral geometry. An uncoordinated phenanthrolinium cation interacts with the anion via an N-H···Br hydrogen bond.

Related literature

The corresponding SbF₃ complex with 1,10-phenanthroline was reported by Bertazzi et al. (1983).

Experimental . .

 $\alpha = 65.296 \ (8)^{\circ}$

Crystal data
$(C_{12}H_9N_2)[SbBr_4(C_{12}H_8N_2)]$
CH_2Cl_2
$M_r = 887.73$
Triclinic, $P\overline{1}$
a = 11.471 (8) Å
b = 11.582 (9) Å
c = 12.154 (9) Å

 $\beta = 84.535 \ (9)^{\circ}$ $\gamma = 88.244 \ (9)^{\circ}$ $V = 1460.1 (19) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 6.62 \text{ mm}^{-1}$ T = 298 (2) K $0.18 \times 0.14 \times 0.08 \ \mathrm{mm}$

metal-organic compounds

 $R_{\rm int} = 0.025$

7508 measured reflections

5056 independent reflections

3378 reflections with $I > 2\sigma(I)$

Data collection

```
Siemens SMART CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.382, T_{\max} = 0.619
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	9 restraints
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 1.81 \text{ e} \text{ Å}^{-3}$
5056 reflections	$\Delta \rho_{\rm min} = -1.12 \text{ e} \text{ Å}^{-3}$
319 parameters	

Table 1

Selected bond lengths (Å).

Sb1-N1	2.312 (5)	Sb1-Br4	2.746 (2)
Sb1-N2	2.386 (6)	Sb1-Br2	2.784 (2)
Sb1-Br3	2.742 (2)	Sb1-Br1	3.035 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4 - H4 \cdots Br1^i$	0.86	2.61	3.327 (6)	141
S ()				

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the National Natural Science Foundation of China (grant No. 20771053), Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2661).

References

Bertazzi, N., Alonzo, G. & Gibb, T. C. (1983). Inorg. Chim. Acta, 73, 121-124. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m3131 [doi:10.1107/S1600536807060485]

1,10-Phenanthrolin-1-ium tetrabromido(1,10-phenanthroline- $\kappa^2 N, N'$) antimonate(III) dichloromethane solvate

J. Zhai, H. Yin, F. Li and D. Wang

Comment

The adducts of SbF₃ with bi-and tri-dentate nitrogen donors such as 1,10-phenanthroline have been reported (Bertazzi *et al.*, 1983). As a continuation of this work, we report here the synthesis and crystal structure of the title compound, (I), (Fig. 1). In this complex, the antimony atom is six-coordinated by two N atoms of phen and four Br atoms with a distorted *cis*-SbN₂Br₄ octahedral geometry (Table 1).

The charge on the anion is balanced by a phenanthrolinium cation, which bonds to the anion *via* an N—H···Br hydrongen bond (Table 2, Fig. 2). A dichloromethane solvent molecule completes the structure.

Experimental

Antimony tribromide (180.7 mg, 0.5 mmol) was dissolved in methanol (20 ml) and 1,10-phenanthroline (99.1 mg, 0.5 mmol) was added with stirring at room temperature. The resulting orange–red solution was allowed to react for five hours and was then filtered. Yellow blocks of (I) were obtained by slow evaporation of an ethanol/dichloromethane (1:2 ν/ν) solution over a period of two weeks (yield 88%. m.p. 430 K). Anal. Calcd (%) for C₂₅H₁₉Br₄C₁₂N₄Sb: C 33.82; H 2.16; N 6.31. Found: C 33.94; H 2.05; N 6.45.

Refinement

The H atom bound to N1 was located in a difference map, relocated in an idealized position (N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for the methyl group.

Figures

Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. Crystal packing of (I), showing the donor-acceptor contacts for the N—H-Br hydrogen bonds as dashed lines.

1,10-Phenanthrolin-1-ium tetrabromido(1,10-phenanthroline- $\kappa^2 N$,N') antimonate(III) dichloromethane solvate

Crystal data

$(C_{12}H_9N_2)$ [SbBr $(C_{12}H_8N_2)_4$]·CH ₂ Cl ₂	<i>Z</i> = 2
$M_r = 887.73$	$F_{000} = 844$
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.019 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 11.471 (8) Å	Cell parameters from 2399 reflections
b = 11.582 (9) Å	$\theta = 2.5 - 25.3^{\circ}$
c = 12.154 (9) Å	$\mu = 6.62 \text{ mm}^{-1}$
$\alpha = 65.296 \ (8)^{\circ}$	T = 298 (2) K
$\beta = 84.535 \ (9)^{\circ}$	Block, yellow
$\gamma = 88.244 \ (9)^{\circ}$	$0.18 \times 0.14 \times 0.08 \ mm$
$V = 1460.1 (19) \text{ Å}^3$	

Data collection

Siemens SMART CCD diffractometer	5056 independent reflections
Radiation source: fine-focus sealed tube	3378 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 12$
$T_{\min} = 0.382, \ T_{\max} = 0.619$	$k = -12 \rightarrow 13$
7508 measured reflections	$l = -11 \rightarrow 14$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.040$
$wR(F^2) = 0.112$
<i>S</i> = 1.01
5056 reflections
319 parameters
9 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0567P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.004$ $\Delta\rho_{max} = 1.81 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.11 \text{ e} \text{ Å}^{-3}$

Extinction correction: none

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sb1	0.74351 (4)	0.63084 (4)	0.10677 (4)	0.03882 (16)
Br1	0.49189 (7)	0.70645 (7)	0.05598 (7)	0.0551 (2)
Br2	0.77617 (8)	0.37772 (7)	0.14655 (8)	0.0652 (3)
Br3	0.83075 (7)	0.73103 (7)	-0.13286 (7)	0.0577 (2)
Br4	0.69659 (9)	0.56828 (8)	0.35088 (8)	0.0731 (3)
C11	1.0701 (5)	0.3451 (6)	0.5116 (5)	0.2246 (18)
C12	0.9780 (4)	0.1461 (6)	0.4665 (5)	0.2246 (18)
N1	0.9366 (4)	0.6463 (5)	0.1393 (5)	0.0398 (14)
N2	0.7796 (5)	0.8350 (5)	0.1013 (5)	0.0457 (15)
N3	0.4363 (5)	-0.0210 (6)	0.2689 (6)	0.0569 (17)
N4	0.4445 (5)	0.2270 (6)	0.2372 (5)	0.0500 (16)
H4	0.4677	0.2034	0.1804	0.060*
C1	1.0167 (6)	0.5575 (7)	0.1477 (7)	0.0488 (19)
H1	0.9951	0.4868	0.1363	0.059*
C2	1.1303 (7)	0.5663 (8)	0.1728 (7)	0.061 (2)
H2	1.1838	0.5025	0.1788	0.073*
C3	1.1625 (7)	0.6716 (9)	0.1886 (8)	0.065 (2)
H3	1.2386	0.6791	0.2055	0.078*
C4	1.0815 (6)	0.7671 (7)	0.1794 (6)	0.0477 (19)
C5	0.9690 (6)	0.7522 (6)	0.1522 (6)	0.0397 (17)
C6	0.8850 (6)	0.8488 (6)	0.1358 (6)	0.0405 (17)
C7	0.9154 (7)	0.9599 (6)	0.1483 (6)	0.052 (2)
C8	0.8308 (9)	1.0549 (7)	0.1263 (8)	0.069 (3)
H8	0.8469	1.1290	0.1344	0.083*
С9	0.7264 (9)	1.0383 (7)	0.0936 (8)	0.072 (3)
H9	0.6695	1.1006	0.0795	0.087*
C10	0.7036 (7)	0.9268 (7)	0.0809 (7)	0.059 (2)
H10	0.6313	0.9174	0.0568	0.071*
C11	1.1071 (8)	0.8766 (8)	0.1957 (8)	0.067 (2)
H11	1.1808	0.8848	0.2177	0.080*
C12	1.0297 (8)	0.9689 (8)	0.1808 (8)	0.071 (3)
H12	1.0506	1.0401	0.1918	0.085*
C13	0.4339 (8)	-0.1411 (8)	0.2883 (8)	0.069 (2)
H13	0.4627	-0.1633	0.2256	0.082*
C14	0.3901 (7)	-0.2374 (8)	0.3986 (9)	0.068 (2)
H14	0.3891	-0.3211	0.4074	0.081*
C15	0.3489 (7)	-0.2098 (8)	0.4932 (8)	0.064 (2)
H15	0.3213	-0.2738	0.5674	0.076*
C16	0.3490 (7)	-0.0823 (7)	0.4765 (7)	0.053 (2)
C17	0.3943 (6)	0.0078 (6)	0.3625 (6)	0.0425 (17)
C18	0.3990 (6)	0.1376 (7)	0.3458 (7)	0.0456 (18)
C19	0.3614 (6)	0.1753 (7)	0.4382 (7)	0.0499 (19)
C20	0.3712 (7)	0.3039 (8)	0.4138 (8)	0.062 (2)
H20	0.3445	0.3316	0.4732	0.075*
C21	0.4194 (7)	0.3887 (8)	0.3042 (8)	0.060 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21	0.4285	0.4734	0.2901	0.072*
C22	0.4549 (7)	0.3494 (7)	0.2141 (7)	0.055 (2)
H22	0.4857	0.4076	0.1380	0.066*
C23	0.3076 (7)	-0.0432 (8)	0.5711 (7)	0.060 (2)
H23	0.2756	-0.1032	0.6457	0.072*
C24	0.3148 (7)	0.0804 (8)	0.5525 (7)	0.064 (2)
H24	0.2890	0.1037	0.6151	0.076*
C25	0.9717 (14)	0.3019 (13)	0.4409 (15)	0.207 (7)
H25A	0.9846	0.3534	0.3541	0.248*
H25B	0.8937	0.3197	0.4679	0.248*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.0378 (3)	0.0331 (3)	0.0476 (3)	0.0008 (2)	-0.0008 (2)	-0.0195 (2)
Br1	0.0486 (5)	0.0630 (5)	0.0542 (5)	0.0059 (4)	-0.0029 (4)	-0.0257 (4)
Br2	0.0822 (6)	0.0437 (4)	0.0748 (6)	-0.0054 (4)	0.0056 (5)	-0.0319 (4)
Br3	0.0639 (5)	0.0546 (5)	0.0564 (5)	-0.0063 (4)	-0.0001 (4)	-0.0256 (4)
Br4	0.1065 (7)	0.0592 (5)	0.0570 (5)	-0.0105 (5)	0.0125 (5)	-0.0310 (4)
Cl1	0.173 (3)	0.312 (5)	0.205 (4)	-0.014 (3)	-0.007 (3)	-0.125 (4)
Cl2	0.173 (3)	0.312 (5)	0.205 (4)	-0.014 (3)	-0.007 (3)	-0.125 (4)
N1	0.037 (3)	0.042 (3)	0.051 (4)	0.004 (3)	-0.005 (3)	-0.029 (3)
N2	0.044 (4)	0.032 (3)	0.056 (4)	0.005 (3)	0.009 (3)	-0.016 (3)
N3	0.063 (4)	0.057 (4)	0.059 (4)	-0.003 (3)	0.004 (4)	-0.034 (3)
N4	0.051 (4)	0.054 (4)	0.049 (4)	-0.006 (3)	0.005 (3)	-0.028 (3)
C1	0.049 (5)	0.052 (4)	0.059 (5)	0.011 (4)	-0.013 (4)	-0.035 (4)
C2	0.046 (5)	0.071 (6)	0.079 (6)	0.021 (4)	-0.015 (4)	-0.043 (5)
C3	0.031 (4)	0.091 (7)	0.076 (6)	0.001 (4)	-0.004 (4)	-0.038 (5)
C4	0.043 (5)	0.059 (5)	0.044 (4)	-0.010 (4)	-0.002 (4)	-0.024 (4)
C5	0.044 (4)	0.037 (4)	0.036 (4)	-0.002 (3)	0.004 (3)	-0.015 (3)
C6	0.044 (4)	0.038 (4)	0.041 (4)	-0.003 (3)	0.009 (3)	-0.020(3)
C7	0.069 (6)	0.036 (4)	0.046 (5)	-0.012 (4)	0.017 (4)	-0.018 (3)
C8	0.105 (8)	0.034 (4)	0.064 (6)	-0.011 (5)	0.029 (6)	-0.024 (4)
C9	0.088 (7)	0.033 (4)	0.081 (7)	0.011 (5)	0.018 (6)	-0.015 (4)
C10	0.044 (5)	0.040 (4)	0.076 (6)	0.005 (4)	0.010 (4)	-0.010 (4)
C11	0.063 (6)	0.071 (6)	0.070 (6)	-0.020 (5)	-0.011 (5)	-0.030 (5)
C12	0.085 (7)	0.056 (5)	0.081 (7)	-0.027 (5)	0.008 (6)	-0.040 (5)
C13	0.077 (6)	0.068 (6)	0.077 (6)	0.004 (5)	-0.005 (5)	-0.046 (5)
C14	0.071 (6)	0.051 (5)	0.084 (7)	-0.002 (4)	-0.002 (5)	-0.032 (5)
C15	0.069 (6)	0.052 (5)	0.057 (5)	-0.003 (4)	-0.010 (5)	-0.009 (4)
C16	0.054 (5)	0.055 (5)	0.047 (5)	-0.002 (4)	0.000 (4)	-0.020 (4)
C17	0.039 (4)	0.044 (4)	0.044 (4)	0.001 (3)	-0.001 (4)	-0.018 (4)
C18	0.042 (4)	0.049 (4)	0.046 (5)	0.006 (4)	-0.004 (4)	-0.022 (4)
C19	0.046 (5)	0.059 (5)	0.050 (5)	0.002 (4)	-0.001 (4)	-0.029 (4)
C20	0.076 (6)	0.066 (6)	0.060 (6)	0.014 (5)	-0.010 (5)	-0.042 (5)
C21	0.066 (6)	0.051 (5)	0.072 (6)	-0.001 (4)	-0.010 (5)	-0.033 (5)
C22	0.055 (5)	0.047 (5)	0.059 (5)	-0.001 (4)	-0.007 (4)	-0.017 (4)
C23	0.064 (5)	0.058 (5)	0.041 (5)	-0.009 (4)	0.009 (4)	-0.008 (4)

C24	0.072 (6)	0.075 (6)	0.046 (5)	0.005 (5)	0.007 (4)	-0.029 (5)
C25	0.173 (10)	0.174 (10)	0.200 (10)	-0.040 (8)	-0.051 (8)	0.004 (8)
Geometric parai	neters (Å, °)					
Sb1—N1		2.312 (5)	С8—Н	8	0.9	9300
Sb1—N2		2.386 (6)	С9—С	10	1.3	99 (11)
Sb1—Br3		2.742 (2)	С9—Н	9	0.9	0300
Sb1—Br4		2.746 (2)	C10—I	H10	0.9	9300
Sb1—Br2		2.784 (2)	C11—0	C12	1.3	32 (11)
Sb1—Br1		3.035 (2)	C11—I	H11	0.9	9300
Cl1—C25		1.686 (13)	C12—I	112	0.9	9300
Cl2—C25		1.698 (13)	C13—0	C14	1.3	96 (11)
N1—C1		1.336 (8)	C13—I	H13	0.9	9300
N1—C5		1.366 (8)	C14—0	215	1.3	57 (11)
N2-C10		1.310 (8)	C14—I	H14	0.9	9300
N2C6		1.352 (8)	C15—0	216	1.4	03 (10)
N3—C13		1.311 (10)	C15—I	H15	0.9	9300
N3—C17		1.356 (8)	C16—0	C17	1.4	02 (10)
N4—C22		1.332 (9)	C16—0	223	1.4	40 (10)
N4-C18		1.359 (9)	C17—0	C18	1.4	33 (10)
N4—H4		0.8600	C18—0	C19	1.3	694 (9)
C1—C2		1.382 (10)	C19—0	220	1.3	97 (10)
C1—H1		0.9300	C19—0	224	1.4	29 (10)
C2—C3		1.378 (11)	C20—0	221	1.3	58 (11)
С2—Н2		0.9300	C20—I	H20	0.9	9300
C3—C4		1.398 (10)	C21—0	222	1.3	576 (10)
С3—Н3		0.9300	C21—I	H21	0.9	9300
C4—C5		1.395 (9)	C22—I	122	0.9	9300
C4—C11		1.406 (10)	C23—0	224	1.3	56 (11)
C5—C6		1.416 (9)	C23—I	123	0.9	9300
C6—C7		1.414 (9)	C24—I	124	0.9	9300
С7—С8		1.400 (11)	C25—I	H25A	0.9	9700
C7—C12		1.425 (11)	C25—I	H25B	0.9	9700
С8—С9		1.340 (12)				
N1—Sb1—N2		70.23 (19)	N2—C	10—С9	12	3.0 (8)
N1—Sb1—Br3		83.16 (14)	N2—C	10—H10	113	8.5
N2—Sb1—Br3		86.42 (14)	С9—С	10—H10	113	8.5
N1—Sb1—Br4		85.43 (14)	C12—0	C11—C4	12	2.5 (8)
N2—Sb1—Br4		82.19 (14)	C12—0	С11—Н11	113	8.8
Br3—Sb1—Br4		166.06 (3)	C4—C	11—H11	113	8.8
N1—Sb1—Br2		90.30 (13)	C11—0	С12—С7	12	0.8 (7)
N2—Sb1—Br2		160.06 (15)	C11—0	С12—Н12	119	9.6
Br3—Sb1—Br2		95.76 (3)	С7—С	12—Н12	119	9.6
Br4—Sb1—Br2		92.28 (3)	N3—C	13—C14	12	3.1 (8)
N1—Sb1—Br1		159.61 (13)	N3—C	13—Н13	113	8.5
N2—Sb1—Br1		89.39 (15)	C14—0	С13—Н13	113	8.5
Br3—Sb1—Br1		95.34 (4)	C15—0	C14—C13	12	0.5 (8)
Br4—Sb1—Br1		92.57 (4)	C15—0	С14—Н14	11	9.8

Br2—Sb1—Br1	110.07 (3)	C13—C14—H14	119.8		
C1-N1-C5	118.8 (6)	C14—C15—C16	118.5 (7)		
C1—N1—Sb1	123.8 (4)	C14—C15—H15	120.8		
C5—N1—Sb1	117.3 (4)	C16—C15—H15	120.8		
C10—N2—C6	118.6 (6)	C17—C16—C15	117.0 (7)		
C10—N2—Sb1	126.1 (5)	C17—C16—C23	120.3 (7)		
C6—N2—Sb1	114.9 (4)	C15—C16—C23	122.8 (7)		
C13—N3—C17	116.9 (7)	N3—C17—C16	124.1 (7)		
C22—N4—C18	123.4 (6)	N3—C17—C18	118.4 (6)		
C22—N4—H4	118.3	C16—C17—C18	117.5 (6)		
C18—N4—H4	118.3	N4—C18—C19	118.6 (7)		
N1—C1—C2	122.7 (7)	N4—C18—C17	119.1 (6)		
N1—C1—H1	118.7	C19—C18—C17	122.3 (7)		
С2—С1—Н1	118.7	C18—C19—C20	118.1 (7)		
C3—C2—C1	118.7 (7)	C18—C19—C24	118.2 (7)		
С3—С2—Н2	120.7	C20—C19—C24	123.6 (7)		
C1—C2—H2	120.7	C21—C20—C19	120.7 (7)		
C2—C3—C4	120.3 (7)	C21—C20—H20	119.7		
С2—С3—Н3	119.8	С19—С20—Н20	119.7		
С4—С3—Н3	119.8	C20—C21—C22	120.0 (7)		
C5—C4—C3	117.7 (7)	C20-C21-H21	120.0		
C5—C4—C11	118.6 (7)	C22—C21—H21	120.0		
C3—C4—C11	123.8 (7)	N4—C22—C21	119.1 (7)		
N1—C5—C4	121.8 (6)	N4—C22—H22	120.4		
N1—C5—C6	118.1 (6)	C21—C22—H22	120.4		
C4—C5—C6	120.1 (6)	C24—C23—C16	120.6 (7)		
N2—C6—C7	121.8 (6)	C24—C23—H23	119.7		
N2—C6—C5	118.4 (6)	С16—С23—Н23	119.7		
C7—C6—C5	119.7 (7)	C23—C24—C19	121.1 (7)		
C8—C7—C6	117.5 (8)	C23—C24—H24	119.4		
C8—C7—C12	124.2 (8)	C19—C24—H24	119.4		
C6—C7—C12	118.3 (7)	Cl1—C25—Cl2	113.9 (9)		
C9—C8—C7	119.6 (8)	Cl1—C25—H25A	108.8		
С9—С8—Н8	120.2	Cl2—C25—H25A	108.8		
С7—С8—Н8	120.2	Cl1—C25—H25B	108.8		
C8—C9—C10	119.6 (8)	Cl2—C25—H25B	108.8		
С8—С9—Н9	120.2	H25A—C25—H25B	107.7		
С10—С9—Н9	120.2				
Hydrogen-bond geometry (Å, °)					

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N4—H4…Br1 ⁱ	0.86	2.61	3.327 (6)	141
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

Fig. 1

